

Mess- und Prüftechnik. Die Experten.

Ihr Ansprechpartner / **Your Partner:**

dataTec AG

E-Mail: info@datatec.eu

>>> www.datatec.eu

3-349-564-01 13/2.19

METRACAL MC **Multimeter, Kalibrator**

- Universeller Kalibrator, Simulator und Multimeter mA / mV ... V / °C (Pt100/1000, Ni100/1000, Thermoelement J, L, T, U, K, E, S, R, B, N) / 30 ... 2000 Ω
- Dualmode gleichzeitiges Geben und Messen (U/I)
- Absolut und prozentual (skaliert) messen und geben
- Speicher für Messresultate: 16 MBit
- Frequenzgeber: 1 Hz ... 2 kHz
- Rampen und Treppenfunktionen
- Transmittersimulator (Senke 0 ... 24 mA)
- DAkkS-Kalibierzertifikat im Lieferumfang
- Robuster und EMV-sicherer Aufbau
- Präzisionsmultimeter (V, A, Ω , F, Hz, °C/°F) 30.000 (60.000) Digits und Dreifachanzeige
- Effektivwert-AC-Messung (TRMS) bis 20 kHz
- Bidirektionale IR-Datenschnittstelle
- Gerätetreiber für LabView® (National Instruments) kostenlos
- Kalibriersoftware METRAwin®90-2 optional
- Messdatenerfassungs- und -anlalyse-Software METRAwin®10/METRAHA® optional

Anwendung

Das METRACAL MC erlaubt dem Prozessingenieur das Gerät gleichzeitig als Kalibrator und als Multimeter einzusetzen, um z. B. Fühlerbedingungen am Eingang eines Transmitters zu simulieren bei gleichzeitiger Messung und Speicherung des Ausgangssignals. Mit dem aufgesteckten Infrarot-Schnittstellenadapter USB X-TRA (Zubehör) sind Sie in der Lage, die Mess- und Kalibrierergebnisse zu einem PC zu übertragen, dort aufzuzeichnen und ein Kalibrierprotokoll auszudrucken. Weiterhin können Sie das Multimeter als Datenlogger einsetzen. Die PC-Software METRAwin[®] 10/ METRAHæ[®] (Zubehör) ermöglicht die komfortable Auswertung und Darstellung der Messdaten, METRAwin®90-2 (Zubehör) die Erstellung von Intervall und Rampenabläufen, Online-Steuerung des METRACAL MC sowie das Generieren von Kalibrierzertifikaten.

Kalibrator mit Schleifenstrom-Messgerät

Universelle Kalibrierquelle

Die eingebaute Elektronik generiert mV- und V- sowie mA-Signale. Außerdem ist sie in der Lage Thermospannungen zahlreicher Thermoelement-Typen für vorgegebene Temperaturen (°C oder °F) ebenso zu simulieren wie für verschiedene Pt- und Ni-Temperatursensoren.

Frequenzgeber

Für Prüfungen an SPS, Zähleinrichtungen für Energie, Durchfluss u. a. können vom **METRACAL MC** kontinuierliche Frequenzsignale ausgegeben werden. Die generierten Rechteckimpulse sind in der Amplitude und Frequenz einstellbar und als Simulation von Sensorimpulsen zu verwenden.

Kalibrierung und Simulation

Messumformer mit vielfältigen Eingangssignalen (Spannung-, Thermospannung-, RTD-und 2-Leiter-Widerstandsferngeber u. a.) können direkt angeschlossen und kalibriert werden. Durch die Verwendung eines Multimeters (z. B. METRAHIT XTRA) können die entsprechenden Messwerte am Messwandlerausgang gemessen, gegebenenfalls über einen Adapter auf einen PC übertragen, dort mit der Software METRAwin®90-2 dargestellt und mit den jeweiligen Kalibriervorgaben verglichen werden. Die Soll- und Istwerte werden angezeigt bzw. als Zertifikat ausgedruckt. In der Stellung "mA-Sink" simuliert das METRACAL MC einen Zweidraht-Transmitter und zieht aus der Messkette den gewählten Stromwert.

Messdatenspeicher (16 MBit / 46.000 Messwerte)

Der Kalibrator wird über den aufgesteckten Schnittstellenadapter USB X-TRA (Zubehör) mit einem PC verbunden. Mit der als Zubehör erhältlichen Software METRAwin®10/METRAHAR® und dem Schnittstellenadapter USB X-TRA können mit der Multimeterfunktion aufgezeichnete Messwerte auf den PC übertragen werden zur komfortablen Visualisierung, Auswertung und Protokollierung.

METRACAL MC Multimeter, Kalibrator

Ausgabearten für Geben- und Senke-Funktionen

Die Ausgabe von Kalibriersignalen kann wahlweise manuell (Inkrement/Dekrement von Dezimalstellen) oder automatisch über Intervalle (Stufen) mit Zwischenschritten oder stufenlos als Rampe erfolgen.

Das METRACAL MC lässt sich damit als Präzisionsgenerator für dynamische Prüfungen verwenden.

Je nach Erfordernis können z. B. die Skalenendwerte und die Anzahl von Zwischenstufen (Intervalle) bzw. Anstiegs- und Verweilzeiten (Rampe) die gewünschte Dynamik bestimmen. Dies ist besonders für Langzeitprüfungen von Labor- und Einbauschreibern sowie Messumformern und im "Einmannbetrieb" in Warten hilfreich.

Numerische Ausgabe

Die Kalibrierwerte werden direkt nach Wahl der Kalibrierfunktion manuell per Gerätetastatur eingestellt und ausgegeben.

Intervall

In dieser Ausgabeart erfolgt die fortlaufende Ausgabe von Kalibrierwerten in Stufen zwischen dem eingestellten Min- und Max-Wert des zu kalibrierenden Gerätes. Der Folgeschritt kann automatisch (Zeit pro Schritt 1 s ... 60 min) oder manuell ausgeführt werden.

Rampe

In dieser Ausgabeart erfolgt eine fortlaufende Ausgabe von stufenlosen Kalibrierwerten zwischen dem eingestellten Min- und Max-Wert des zu kalibrierenden Geräts.

Die Rampenzeit für ansteigende und abfallende Rampe sowie die Verweilzeit bei MIN- und MAX-Werten kann zwischen 1 s und 60 min eingestellt werden.

Temperatursimulation

Zur Simulation von Thermospannungen stehen die zehn gängigsten Fühlertypen zur Verfügung. Die Thermospannung kann auf eine interne Vergleichsstelle (Buchsentemperatur) oder auf eine externe Vergleichsstelle bezogen ausgegeben werden. Die externe Vergleichsstellentemperatur lässt sich am Kalibrator oder per PC einstellen. Hierdurch erübrigt es sich, den Kalibriergegenstand über die jeweilig erforderliche Ausgleichsleitung mit dem Kalibrator zu verbinden. Eine Kupferleitung zwischen Kalibrator und Kalibriergegenstand genügt in diesem Falle.

Angewendete Vorschriften und Normen

IEC 61010-1/ DIN EN 61010-1/ VDE 0411-1	Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte	
EN 60529	Prüfgeräte und Prüfverfahren	
VDE 0470 Teil 1	Schutzarten durch Gehäuse (IP-Code)	
DIN EN 61 326-1	Elektrische Mess-, Steuer-, Regel- und Laborgeräte –	
VDE 0843-20-1	EMV-Anforderungen – Teil 1: Allgemeine Anforderungen	

Gewährleistung

3 Jahre für Material und Fabrikationsfehler

1 Jahr für Kalibrierung

Technische Kennwerte

Kalibratorteil

Kalibrier- funktion	Geberbereich	Auflösung 30000 Digit (4¾-stellig)		Eigen- unsicherheit	Überlast
Gleich	Gleichspannungsquelle		Minimaler Lastwiderstand	±(% v.S + mV)	I _{max}
	0±60mV	1 μV		0,1 + 0,01	
	0±300mV	0,01 mV		0,05 + 0,02	
V	0 3 V	0,1 mV	1 kΩ	0,05 + 0,2	18 mA
	010 V	1 mV		0,05 + 2	
	015 V	1 mV		0,05 + 2	
Tastve	Impuls-/Frequenzgenerator Tastverhältnis (Puls-Pausenverhält- nis): 50%, Amplitude: 10 mV 15 V		Minimaler Lastwiderstand	±(% v.S + Hz)	I _{max}
Hz	1 Hz2 kHz	0,11 Hz	1 kΩ	0,05 + 0,2	18 mA
Stron	nquelle		max. Bürde	±(% v. S + μA)	
mA	4 20 mA 0 20 mA 0 24 mA	1 μΑ	16 V	0,05 + 2	
Stron	nsenke			±(% v. S + μA)	U _{max}
	4 20 mA				IIIax
mA	0 20 mA	1 μΑ	V _{in} = 4 26 V	0,05 + 2	26 V
	0 24 mA				
Wide	rstandsgeber		Fühlerstrom [mA]	±(% v. S + Ω)	I _{max}
Ω	52000 Ω	0,1 Ω	0,05 <u>0,14</u> 5	0,05 + 0,2	5 mA

Simulator von Temperatursensoren (Auflösung 0,1 K)

	Sensortyp	Geberbereich in °C	Geberbereich in °F	Eigen- unsicherheit	Überlast
	Widerstandsthern	nometer gemäß I	EC 751	±(%v. S + K)	I _{max}
	Pt100	-200+850	-328+1562	0,1 + 0,5	5 mA
	Pt1000	-200+300	-328+572	0,1 + 0,2	3 IIIA
	Widerstandsthern	nometer gemäß [DIN 43760	±(%v. S + K)	I _{max}
	Ni100	−60+180	−76+356	0,1 + 0,5	5 mA
	Ni1000	−60+180	−76 …+356	0,1 + 0,2	3 IIIA
	RTD-Fühlerstrom 0	,05 <u>0,1 4</u>	5 mA		
J∘ / J∘	Thermoelemente	gemäß DIN bzw.	IEC 584-1	ΔU in mV ¹⁾	I_{max}
ပွ	K (NiCr/Ni)	-250+1372	-418+2501		
	J (Fe/CuNi)	-210+1200	-346+2192		
	T (Cu/CuNi)	-270+400	-454+ 752		
	B (Pt30Rh/Pt6Rh)	+500+1820	+932+3308	±(0,05%	
	E (NiCr/CuNi)	-270+1000	-454+1832	v. ISettingl	18 mA
					I O IIIA
	R (Pt13Rh/Pt)	− 50+1768	-58+3214	+	
	R (Pt13Rh/Pt) N (NiCrSi-NiSi)	-50+1768 -270+1300	-58+3214 -454+2372	0,02)	
	,				
	N (NiCrSi-NiSi)	-270+1300	-454+2372		

¹⁾ ohne interne Vergleichsstelle;

bezogen auf feste externe Referenztemperatur und Thermospannung des Elements Vergleichsstelle intern: Eigenabweichung 2 K, Vergleichsstelle extern: Eingabe $-30\dots60\,^{\circ}\text{C}$

Legende

S = Set = Einstellwert

METRA CAL | MC **Multimeter, Kalibrator**

Multimeterteil

Mess- funktion	Messbereich		Messb	ung bei ereich- lwert	E	ingangs	impedanz		der höchste bei Referenz	sicherheit en Auflösung bedingungen		stbarkeit 3)
lulikuoli			30000 ¹⁾ (60000)	3000 ¹⁾	DO	3	A	;	±(% v. MW. + D)	±(% v. MW. + D) AC ^{4) 10)}	Wert	Zeit
	60	mV ²⁾	1 μV		> 20	MΩ	_	-	0.1 + 10 5)	_		
	300	mV	10 μV		> 20		5 MΩ //	< 50 pF	0,08 + 10 5)	0,5 + 30 (> 500D)	300 V DC	
v	3	V	100 μV			MΩ	5 MΩ //		0,05 + 10	0,2 + 30 (> 100D)	AC	dauernd
	30	V	1 mV		10	MΩ	5 MΩ //	< 50 pF	0,05 + 10	0,2 + 30 (> 100D)	eff	
İ	300	V	10 mV		10	MΩ	5 MΩ //	< 50 pF	0,05 + 10	0,2 + 30 (> 100D)	Sinus	
					Spannu	ngsfall ca	. bei Endwe	rt MB.				
					DO)	A)	DC	AC 4) 10)		
	0,3	mA	10 nA		160	mV	160	mV	0.1 + 15	0,8 + 30 (> 100D)		
	3	mA	100 nA		160	mV	160	mV	0,05 + 15	0,5 + 30 (> 100D)		
mA	30	mA	1 μΑ		180	mV	180	mV	0,05 + 15	0,5 + 30 (> 100D)	0,36 A	dauernd
İ	300	mA	10 μA		380	mV	380	mV	0,05 + 15	0,5 + 30 (> 100D)		
					Leerlaufsp	annung	Messstr Endwe		±(% v. N	1W. + D)		
	300	Ω	10 mΩ		0,6	V	250	μΑ	0,1 + 5	5)		
	3	kΩ	0,1 Ω		0,6	V	150	μΑ	0,1 + 5	5)		F!-
Ω	30	kΩ	1 Ω		0,6	V	30	μΑ	0,1 + 5		300 V DC	
12	300	kΩ	10 Ω		0,6	V	3	μΑ	0,2 + 5		AC	5 min
	3	$M\Omega$	100 Ω		0,6	V	360	nA	0,5 + 10	O ¹⁰⁾	eff	
	30	$M\Omega$	1 Ω		0,6	V	100	nA	2 + 10	10)	Sinus	
Ω 🗅	300	Ω		0,1 Ω	3,2	V	1	mA	2 + 5			max. 10 s
->+	6	V	1 mV		7	V	ca. 1	mA	0,5 + 3		300 V	max. 10 s
					Entladewi	derstand	U _{0 n}	197	±(% v. N	ΛW. + D)		
	30	nF		10 pF	1	MΩ	3	V	1 + 10 !	5) 10)		
İ	300	nF		100 pF	100	kΩ	3	V	1 + 6 5)	10)	300 V DC	
F	3	μF		1 nF	12	kΩ	3	V	1 + 6 10))	AC	5 min
	30	<u>.</u> μF		10 nF	12	kΩ	3	V	1 + 6 10))	eff	
	300	μF		100 nF	3	kΩ	3	V	5 + 6 ¹⁰		Sinus	
						fmi	6) n		±(% v. N	ΛW. + D)		
	300	Hz	0,01 Hz				•			,	300 V	
	3	kHz	0.1 Hz		1	Hz				7) 10)	300 V	1
Hz	30	kHz	1 Hz						0,05 + 5	5 () (0)	200 V	dauernd
	300		10 Hz		10	Hz			†		20 V	1

Mess- funk-	remperatur-	Messbereich	Auflösung	Eigenunsicherheit der höchsten Auflösung	Uberlast- barkeit ³⁾	
tion	tion sensor		Aufli	bei Referenzbedingungen ±(% v. MW. + D) 8)	Wert	Zeit
	Pt 100	-200,0 −100,0 °C				
		−100,0 +100,0 °C				
		+100,0 +850,0 °C				
	Pt 1000	−200,0 +100,0 °C		0,3 + 10		
		+100,0 +850,0 °C				
	Ni 100	-60,0 +180,0 °C				
	Ni 1000	−60,0 +180,0 °C			-	
	K (NiCr-Ni)	−250,0 +1372,0 °C				
	J (Fe-CuNi)	−210,0 +1200,0 °C	\prec		300V DC	5
°C/°F	T (Cu-CuNi)	−270,0 +400,0 °C	0,1		eff	min
	B (Pt30Rh/ Pt6Rh)	+500,0 +1820,0 °C			Sinus	
	E (NiCr/CuNi)	−270,0 +1000,0 °C		0,2 + 10 ⁹⁾		
	R (Pt13Rh/Pt)	-50,0 +1768,0 °C				
	N (NiCrSi-NiSi)	-270,0 +1300,0 °C				
	S (Pt10Rh/Pt)	-50,0 +1768,0 °C	1			
	L (Fe/CuNi)	−200,0 +900,0 °C				
	U (Cu/CuNi)	−200,0 +600,0 °C				

- Anzeige: 3¾ Stellen für Kapazitätsmessung; für die Speicherung und Übertragung von Messwerten ist eine andere Abtastrate einstellbar im Menü rAtE

- 2 instellibility in Menu Ind.
 2) nur manuell einstellbar
 3) bei 0 ° ... + 40 °C
 4) 20 ... 45 ... 65 Hz ... 1 kHz Sinus, für Wechselspannung TRMS_{AC}, Messwerte < 100 Digit werden unterdrückt, Einflüsse siehe Seite 4
- 5) bei Funktion "Nullpunkteinstellung" aktiv, Anzeige ZERO maximale Korrektur 50 % v. MB
- 6) niedrigste messbare Frequenz bei sinusförmigem Messsignal symmetrisch zum Nullpunkt
- 7) Bereich 300 mV~: $U_E \ge 40$ % vom Messbereichsendwert 3/30/300 V~: $U_E \ge 10$ % vom Messbereichsendwert

- 8) zuzüglich Fühlerabweichung
 9) ohne eingebaute Referenzstelle;
 mit interner Referenztemperatur zusätzlicher Fehler ±2 K
 10) Grenzen gelten nur für Batteriebetrieb

Legende

D = Digit

MB = Messbereich

MW = Messwert

METRACAL | MC Multimeter, Kalibrator

Einflussgrößen und Einflusseffekte

Einflussgröße	Einfluss- bereich	Messgröße/ Messbereich ¹⁾	Einflusseffekt ± (% v. MW. + D)/10 K
		V DC, °C (TC)	0,1 + 10
		V AC	0,5 + 10
		3/30 mA DC	0,1 + 10
		3/30 mA AC	0,5 + 10
		300 mA DC, AC	0,5 + 10
		$300\Omega/3/30/300$ kΩ 2L	0,2 + 10
	0 +21 °C	3 MΩ 2L	0,5 + 10
Temperatur	und	30 MΩ 2L	1 + 10
iemperatui	unu	30/300 nF/3/30/300 μF	0,5 + 10
	+25+40 °C	Hz	0,1 + 10
		°C (RTD)	0,2 + 10
		Gebergröße	
		mV/V, °C (TC)	0,1 + 10
		Ω, °C (RTD)	0,2 + 10
		mA Source	0,1 + 10
		mA Sink	0,1 + 10

¹⁾ Mit Nullpunkteinstellung

Einflussgröße	Frequenz	Messgröße/ Messbereich	Einflusseffekt ²⁾ ± (% v. MW. + D)
Frequenz V _{AC}	> 20 Hz 45 Hz	300,00 mV	2 + 30
	> 65 Hz 1 kHz	•••	2 + 30
	> 1 kHz 20 kHz	300,0 V	3 + 30

Einflussgröße	Frequenz	Messgröße/ Messbereich	Einflusseffekt ²⁾ ±(% v. MW. + D)
_	> 20 Hz 45 Hz	0,3 mA	2 + 30
Frequenz I _{AC}	> 65 Hz 10 kHz	3 mA 30 mA 300 mA	3 + 30

Einflussgröße	Einfluss	sbereich	Messgröße/ Messbereich	Einflusseffekt ²⁾
		1 2		±1 % v. MW.
	Crest- faktor CF	2 4	V AC, A AC	±5 % v. MW.
		4 5		±7 % v. MW.
Kurvenform der Messgröße			restfaktor CF der zu messenden gezeigten Wert: Spannungs- und Stron 10000 20000	,

²⁾ Fehlerangaben gelten ab einer Anzeige von 10% des Messbereichs

Einflussgröße	Einflussbereich	Messgröße/ Messbereich	Einflusseffekt
	75 %		
Relative Luftfeuchte	3 Tage	V, A, Ω F, Hz °C	1 x Eigenunsicherheit
	Gerät aus		

Einflussgröße	Einflussbereich	Mess- bereich	Dämpfung ±dB
	Störgröße max. 250 V \sim	V ===	> 90 dB
Gleichtakt- störspannung	Störgröße max. 250 V ∼	300 mV 30 V ∼	> 80 dB
	50 Hz, 60 Hz Sinus	300 V ∼	> 70 dB
Störgröße V ~ , jeweils Nennwert des Messbereiches, störspannung max. 250 V ~ , 50 Hz, 60 Hz Sinus		V 	> 60 dB
	Störgröße max. 250 V —	V ~	> 60 dB

Echtzeituhr

Zeitformat TT.MM.JJJJ hh:mm:ss,0

Auflösung 0,1 s

Genauigkeit ±1 min/Monat Temperatureinfluss 50 ppm/K

Referenzbedingungen

Umgebungs-

temperatur +23 °C ± 2 K Relative Feuchte $40 \dots 60\%$

Frequenz der

Messgröße bei AC 45 ... 65 Hz

Kurvenform der

Messgröße bei AC Sinus, Abweichung zwischen Effektiv- und

Gleichrichtwert < 0,1%

Batteriespannung 3,0 V ±0,1 V

Einstellzeit (Multimeterfunktionen)

Einstellzeit (nach manueller Bereichswahl)

Messgröße/ Messbereich	Einstellzeit der Digitalanzeige	Sprungfunktion der Messgröße
V DC, V AC A DC, A AC	1,5 s	von 0 auf 80% des Messbereichsendwertes
300 Ω 3 MΩ	2 s	
30 MΩ	5 s	
Durchgang	< 50 ms	von ∞ auf 50% des Messbereichsendwertes
> +	1,5 s	doc mocoborolonomawortoo
°C Pt100	max. 3 s	
3 nF 30 μF	max. 2 s	von 0 auf 50%
>10 Hz	max. 1,5 s	des Messbereichsendwertes

Anzeige

LCD-Anzeigefeld (65 mm \times 35 mm) mit Anzeige von maximal 3 Messwerten, Messeinheit, Stromart und verschiedenen Sonderfunktionen.

Anzeige / Ziffernhöhe 7-Segment-Ziffern

Hauptanzeige: 12 mm

Nebenanzeigen: 7 mm

Stellenzahl 4%-stellig \cong 30999 Schritten Überlaufanzeige "**OL**" bzw. "-OL" wird angezeigt Polaritätsanzeige "-" Vorzeichen wird angezeigt,

wenn Pluspol an "⊥"

METRACAL | MC Multimeter, Kalibrator

LCD-Test nach Einschalten des Geräts werden alle

im Betrieb des METRACAL MC ansteuerba-

ren Segmente aktiviert

Elektromagnetische Verträglichkeit EMV

Störaussendung EN 61326-1:2013 Klasse B

Störfestigkeit EN 61326-1:2013 EN 61326-2-1:2013

Stromversorgung

Batterie 2 x 1,5 V Mignonzelle

Alkali-Mangan-Zellen nach IEC LR6

oder entsprechender Akku

Betriebsdauer mit Alkali-Mangan-Zellen (2600 mAh)

Messfunktion	Strom	Betriebsdauer
V, Hz, mA, Ω ₂ , F, °C	31 mA	70 h
Standby (MEM + Uhr)	350 μΑ	ca. 1 Jahr
Kalibrierfunktion		Betriebsdauer
mV, Thermoelement	80 mA	25 h
15 V	200 mA	10 h
Ω , RTD	130 mA	15 h
Senke 20 mA (25 V)	300 mA	5 h
Quelle 20 mA für Bürde < 5V	230 mA	10 h

Bei Unterschreitung von 2,0 V schaltet

sich das Gerät automatisch ab.

Batterietest Anzeige der Batteriekapazität über

4-segmentiges Batteriesymbol " **SM**". Abfrage der aktuellen Batteriespannung

über Menüfunktion.

Versorgung über Netz mit Netzadapter NA X-TRA

Stromsparschaltung

Das Gerät schaltet sich automatisch ab, wenn der Messwert lange konstant ist und während einer einstellbaren Vorgabezeit in Minuten kein Bedienelement betätigt wurde. Beim Geber wird zuerst der Ausgang abgeschaltet und nach einer weiteren Minute das Display, falls kein Bedienelement betätigt wurde. Die Abschaltung kann deaktiviert werden. (APOFF = 0N)

Sicherungen

Schmelzsicherungen **DMM** (mA-Strommessbereiche):

F2: FF0,63A/400V, 5 mm x 20 mm Schaltvermögen ≥ 10 kA bei 400 V AC

(Artikelnummer: Z109M)

Kalibrator:

F1: FF0,16A/400V, 5 mm x 20 mm Schaltvermögen ≥ 10 kA bei 400 V AC (Artikelnummer: Z109N gilt ab 06.2016)

Elektrische Sicherheit des Multimeterteils

Schutzklasse II nach DIN EN 61010-1:2011/VDE 0411-1:2011

Messkategorie II Arbeitsspannung 300 V Verschmutzungsgrad 2

Prüfspannung 2,2 kV~ nach DIN EN 61010-1:2011/

VDE 0411-1:2011

Umgebungsbedingungen

Genauigkeitsbereich $0 \, ^{\circ}\text{C} \dots + 40 \, ^{\circ}\text{C}$ Arbeitstemperaturen $-10 \, ^{\circ}\text{C} \dots + 50 \, ^{\circ}\text{C}$

Lagertemperaturen −25 °C ... +70 °C (ohne Batterien)

Relative Luftfeuchte 40% ... 75%,

Betauung ist auszuschließen

Höhe über NN bis zu 2000 m

Mechanischer Aufbau

Schutzart IP 65

Tabellenauszug zur Bedeutung des

IP-Codes

IP XY (1. Ziffer X)	Schutz gegen Eindringen von festen Fremdkörpern		Schutz gegen Eindringen von Wasser
6	staubdicht	5	Strahlwasser

Abmessungen 200 mm x 87 mm x 45 mm Gewicht ca. 430 g mit Batterien

Datenschnittstelle

Typ optisch mit Infrarotlicht durch das Gehäuse Datenübertragung seriell, bidirektional (nicht IrDa-kompatibel)

Protokoll gerätespezifisch Baudrate 38400 Baud

Funktionen DMM: Daten lesen und DMM parametrieren

Kalibrator: Einstellen/Abfragen von Kalibrierfunktionen und Parametern

Durch den aufsteckbaren Schnittstellenadapter USB X-TRA (siehe Zubehör) erfolgt die Adaption an die Rechnerschnittstelle USB.

Lieferumfang

- 1 Kalibrator METRACAL MC mit 2 Batterien IEC LR6
- KS29 Sicherheits-Kabelset bestehend aus 3 Messleitungen (1 schwarz, 1 blau, 1 rot) mit 90° abgewinkelten Sicherheitssteckern, Prüfspitzen und 3 Sicherheitskappen für CAT IV, 1000 V CAT II 16 A / 600 V CAT IV 1 A
- 1 Gummischutzhülle GH-XTRA
- 1 DAkkS-Kalibrierzertifikat
- 1 Kurzanleitung*
- * Ausführliche Bedienungsanleitung zum Download im Internet unter www.gossenmetrawatt.com

METRACAL | MC Multimeter, Kalibrator

Zubehör

Cordura-Gürteltasche HitBag (Z115A)

für Multimeter der Serie **METRAHIT** (mit/ohne Gummischutzhülle)

Hartschalenkoffer HC20 (Z113A)

für Multimeter (mit/ohne Gummischutzhülle) sowie Zubehör

Tragtasche F829 für Multimeter

(mit und ohne Gummischutzhülle) sowie Zubehör

Cordura-Gürteltasche HitBag L (Z115B) (ohne Inhalt)

Für Multimeter der Serie **METRAHIT** (mit/ohne Gummischutzhülle) sowie Zubehör

Bestückungsbeispiel

Schnittstellenadapter für USB-Anschluss (Z216C)

Der bidirektionale Schnittstellenadapter USB X-TRA hat folgende Funktionen:

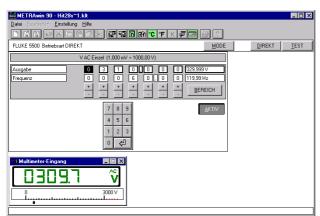
- Einstellen des METRACAL MC vom PC aus.
- Life-Messdaten zum PC übertragen.
- Daten aus dem Speicher des METRACAL MC auslesen.

Der Adapter benötigt keine separate Spannungsversorgung. Seine Baudrate beträgt 38400 Baud.

Zum Lieferumfang gehört eine CD-ROM mit den aktuellen Treibern für Windows-basierte Betriebssysteme.

Bereitschaftstasche F836 (ohne Inhalt)

Für Multimeter der Serie **METRAHIT** (mit/ohne Gummischutzhülle) sowie Zubehör


Bestückungsbeispiel

METRACAL | MC Multimeter, Kalibrator

Zubehör Kalibriersoftware METRAwin®90-2

Die Kalibriersoftware METRAwin[®] 90-2 ist ein mehrsprachiges Windows-Programm zur PC-gestützten Steuerung diverser Kalibratoren aus unserem Geräteprogramm (**METRACAL MC**, METRAHIT CAL, METRAHIT 28C, METRAHIT 28C light und METRAHit 18C) und zur Dokumentation der Kalibrierergebnisse.

- Bequeme, interaktive Steuerung des am PC angeschlossenen Kalibrators durch direkte Dateneingabe als Einzelwert
- Unkompliziertes, schnelles Generieren, Testen und Ausführen von Kalibrierprozeduren
- Einfache Bedienung: Auch angelernte Kräfte können qualifizierte Kalibrieraufgaben durchführen
- Einblenden von automatisch generierten oder vom Anwender definierten Bedienhinweisen vor Ausführung eines Prozedurschrittes
- Bei angeschlossenem Multimeter: Einblenden und laufende Aktualisierung des über die Schnittstelle eingelesenen Messwertes
- Hohe Anwendungsflexibilität durch Nachführen des Kalibriersignals (bei analogen Messwertanzeigen, Schreibern etc.), durch Tastatureingabe eines abgelesenen Messwertes oder durch Messwertabfrage vom Multimeter via Schnittstelle
- ISO-9000-konforme Dokumentation der Kalibrierung in Form eines standardisierten oder vom Anwender konfigurierbaren Protokolls mit den nötigen Angaben zum Kalibrierobjekt und system und tabellarischer Auflistung der Kalibrierwerte und deren Beurteilung für jeden Kalibrierpunkt
- Dynamische Datenübergabe zu den vom Anwender unter Microsoft[®]Excel™ oder Microsoft[®]Word™ bearbeiteten Protokollvorlagen (z. B. mit eigenem Firmenlogo)
- Sichere Archivierung von Prozeduren und Protokollen auf Datenträger.

Direkte Eingabe von Kalibrierwerten

Die Software realisiert die interaktive (Betriebsart DIREKT) oder ablaufgesteuerte (Betriebsart TEST) Einstellung des Kalibrators durch den PC über seine IR-Schnittstelle (unter Verwendung des Schnittstellenadapters USB-XTRA), die automatische Beurteilung der manuell eingegebenen oder über die Schnittstelle vom Multimeter eingelesenen Messwerte und die Dokumentation und Archivierung der Kalibrierergebnisse in einem Kalibrierprotokoll. Kalibrierprozeduren für die jeweiligen Kalibrierobjekte lassen sich mit dem Programm unkompliziert erstellen und testen.

ETRAHR 28	C Betrieboart TEST	<u>E</u> inlesen	Upload	SCHRITT	BUN STO	3P <u>D</u>	IREKT IES
ASS Prozent	anteil 80% ÄNDERN	Messuns, werte I	löschen				
Scheitt 1	Ausgabe Temp.RTD Pt100	Par. 1 0.0 °C	Par. 2	Par. 3	Par. 4	Par. 5	
Status:	Text 04600°C/4-20wA	Betriebsart Digits: 10	Bereich 16,0000 mA	Sollwert 4,0000 m/l. =	Min 3,9680 mA =	Max 4,0320 mA =	gemessen
Schritt 2	Autgabe Temp.RTD Pt100	Par. 1 60.0 °C	Par. 2	Pax. 3	Par. 4	Par. 5	
Status:	Text D-600°C/4-20m/A	Betriebsart Digits: 10	Bereich 16,0000 mA =	Sollwert 5,6000 mA =	Min 5,5680 mA =	Max 5,6320 mA =	gemessen
Schritt 3	Ausgabe Temp.RTD Pt100	Par. 1 120,0 °C	Par. 2	Par. 3	Par. 4	Par. 5	
itatus:	Text 0-600°C/4-20mA	Betriebsart Digits: 10	Bereich 16,0000 mA.=	Sollwert 7,2000 mA =	Min 7,1680 mA =	Max 7,2320 mA =	gemessen
Schrift 4	Ausgabe Temp.RTD Pt100	Pax.1 180,0 °C	Par. 2	Par. 3	Par. 4	Par. 5	
italus:	Text 0-600°C/4-20mA	Betriebsart Digits: 10	Bereich 16,0000 mA.=	Sollwert 8,8000 mA =	Min 8,7680 mA =	Max 8,8320 mA =	gemessen
5	Ausgabe Temp.RTD Pt100	Par. 1 240,0 °C	Par. 2	Pax. 3	Par. 4	Par. 5	
tatus:	T ext D-600°C/4-20mA	Betriebsart Digits: 10	8ereich 16.0000 mA.=	Sollwert 10.4000 mA.=	Min 10.3680 mA =	Max 10,4320 mA =	gemessen
6	Ausgabe Temp.RTD Pt100	Par. 1 300,0 °C	Par. 2	Par, 3	Par. 4	Par. 5	
itatus:	Text 0-600°C/4-20mA	Betriebsart Digits: 10	Bereich 16,0000 mA.=	Sollwert 12,0000 mA =	Min 11,9680 mA =	Max 12,0320 mA =	gemessen
Schritt 7	Ausgabe Temp.RTD Pt100	Par. 1 360,0 °C	Par. 2	Par. 3	Par. 4	Par. 5	
itahus:	Text D500°C/4-20mA	Betriebsart Digits: 10	Bereich 16,0000 mA =	Sollwert 13,6000 mA =	Min 13.5680 mA =	Max 13.6320 mA =	gemessen
Schrift	Ausgabe	Par. 1	Par. 2	Pac 3	Par. 4	Par. 5	

Kalibrierablauf für Messumformer (Funktion "TEST")

GoMe PS		Zertifikat Nr.:		XX	XXX-yyy-999999		
V624 XX-12345-7 TempMess 23±2°C 45-65% r.F.	89 umformer	Zeititala IV. Kalibrator. Seriennummer: Zertifikat: Mulimeter: Seriennummer: Zertifikat: Referenz-Multimeter: Seriennummer: Zertifikat: Unterschrift: Unterschrift:		T: LB DK ME T: LB DK ME T: LB	METRAHI 28C LB0013 DKD-K-19701-C0033 METRAHI 28C LB0013 DKD-K-19701-C0033		
Sollwert	Greszw. untes	Grenzw. oben	Prüfling Istwert	Prüfling Abweichung	% Fehl. d. Spezifik.	Pass	Messu verhält
4,0000 mA =	3,9680 mA =	4,0320 mA =	4,0076 mA =	0,0076 mA =	24%	PASS	-
5,6000 mA =	5,5680 mA =	5,6320 mA =	5,6001 mA =	0,0001 mA =	0%	PASS	
7,2000 mA =	7,1680 mA =	7,2320 mA =	7,2029 mA =	0,0029 mA =	9%	PASS	1 4
8,8000 mA =	8,7680 mA =	8,8320 mA =	8,8010 mA =	0,0010 mA =	3%	PASS	
10,4000 mA =	10,3680 mA =	10,4320 mA =	10,4048 mA =	0,0048 mA =	15%	PASS	1 2
12,0000 mA =	11,9680 mA =	12,0320 mA =	12,0052 mA =	0,0052 mA =	16%	PASS	1
13,6000 mA =	13,5680 mA =	13,6320 mA =	13,6073 mA =	0,0073 mA =	23%	PASS	1
15,2000 mA =	15,1680 mA =	15,2320 mA =	15,2108 mA =	0,0108 mA =	34%	PASS	2
16,8000 mA =	16,7680 mA =	16,8320 mA =	16,8103 mA =	0,0103 mA =	32%	PASS	
18,4000 mA =	18,3680 mA =	18,4320 mA =	18,4099 mA =	0,0099 mA =	31%	PASS	
20,0000 mA =	19,9680 mA =	20,0320 mA =	20,0129 mA ==	0,0129 mA =	40%	PASS	
	 - -						
	GuHo 16.07.1999 Camille Bau V624 XX-12345-7 Ermp-Mess 23±2°C 45-65% r.F. METRAwin Sollwert 4,0000 mA = 5,6000 mA = 1,0000 mA = 11,0000 mA =	Guillo 16.07.1999 Camille Bauer V624 Camille Bauer V624 SX-12345-789 Temp-Messumformer 23-2°C 45-65% r.F. METRAwin 90-2 Proz. Sollwert Grenzo. unten 4,0000 mA = 3,5680 mA = 5,5000 mA = 7,1680 mA = 7,2000 mA = 7,1680 mA = 10,0000 mA = 11,5680 mA = 11,5000 mA = 11,5680 mA = 115,000 mA = 15,5680 mA =	GuHo Kali 16.07.1999 Camille Bauer V62.4 Mul XX-12345-789 TempMessumformer Refe 23±2°C 45-65% r.F. METRAwin 90-2 Proz. Unit Sollwert Greans. Greans. uniten 4,0000 mA = 3,5680 mA = 4,0320 mA = 5,6000 mA = 7,2600 mA = 5,6320 mA = 7,2000 mA = 7,7680 mA = 8,8320 mA = 10,4000 mA = 10,3680 mA = 10,4320 mA = 11,6000 mA = 11,5680 mA = 10,4320 mA = 13,6000 mA = 13,5680 mA = 15,2320 mA = 15,2000 mA = 15,680 mA = 15,2320 mA = 16,6000 mA = 15,680 mA = 15,2320 mA = 16,6000 mA = 16,5600 mA = 15,2300 mA = 16,6000 mA = 16,6800 mA = 16,8320 mA = 16,6000 mA = 16,6800 mA = 16,8320 mA = 16,6000 mA = 16,6800 mA = 16,8320 mA =	CuHo Kalibrator:	CuHo Camille Bauer Camille Bauer Electricitists: LB	CuHo Kalibrator: METRAHir 16/07/1999 Seriennummer: LB0013 Camille Bauer Zertifikat: DKD-K-1970 Camille Bauer Zertifikat: DKD-K-1970 Camille Sauer Seriennummer: LB0013 Camille Sauer METRAHir METRAHir DKD-K-1970 Camille Sauer Seriennummer: LB0013 Camille Sauer DKD-K-1970 Camille Sauer CuHo Camille Bauer Camil	

Ausdruck eines Kalibrierprotokolls nach ISO 9001, welches die Rückführbarkeit (4.11b), Kalibrierverfahren (4.11c), Messunsicherheit (4.11d), Pass/fail (4.11g) sowie Umgebungsbedingungen (4.11h) anführt.

METRACAL | MC **Multimeter, Kalibrator**

Bestellangaben

Beschreibung	Тур	Artikelnummer
Kalibrator, siehe Lieferumfang für METRACAL MC	METRACAL MC	M245A
Zubehör Hardware		
Netzteiladapter mit Weitbereichseingang AC 90 253 V / DC 5 V, 600 V CAT IV	NA X-TRA	Z218G
Microprozessor-gesteuertes Schnell-Lade- gerät für 1 bis 4 NiMh oder NiCd Akkus der Bauform AA oder AAA (Micro bzw. Mig- non) mit 100 240 V AC Netzteil und 10 15 V DC Kfz-Ladekabel	Z206D	Z206D
Tastkopf zur Spannungsmessung in Stark- stromanlagen bis 1000 V	KS30	GTZ3204000R0001
Temperaturfühler Pt100 für Oberflächen- und Tauchmessungen, –40 +600°C	Z3409	GTZ3409000R0001
Temperaturfühler Pt1000 für Messungen in Gasen und Flüssigkeiten, $-50 \ldots +220 ^{\circ}\mathrm{C}$	TF220	Z102A
Ofenfühler Pt100, −50 +550 °C	TF550	GTZ3408000R0001
Kunstleder-Tragtasche für METRAHIT	F829	GTZ3301000R0003
Cordura-Gürteltasche für Multimeter der Serie METRAHIT	HitBag	Z115A
Soft-Gürteltasche Large für ein METRAHIT- oder METRAport-Multimeter. Aus robustem und wasserabweisendem Cordura mit 3 separaten Fächern für Messkabel, Clips, Anleitungen, CD, etc.	HitBag L	Z115B
Kunstleder-Bereitschaftstasche mit Kabelfach	F836	GTZ3302000R0001
Hartschalenkoffer für ein METRAHIT und Zubehör	HC20	Z113A
Hartschalenkoffer für zwei METRAHIT und Zubehör	HC30	Z113B
Schmelzsicherung für mA-Strommessbereiche	FF0,63A/400V	Z109M
Schmelzsicherung für Kalibrator (bis 06.2016)	FF0,63A/400V	Z109M
Schmelzsicherung für Kalibrator (ab 06.2016)	FF0,16A/400V	Z109N
Zubehör Software	HOD V	704.00
Bidirektionaler Schnittstellenadapter IR/USB	USB X-TRA	Z216C
Kalibriersoftware zum Steuern des METRACAL MC und zum Auswerten der Kalibrierergebnisse	METRAwin90-2	Z211A
Software METRAwin®10/METRA <i>H</i> ; τ	METRAwin10	GTZ3240000R0001

Beschreibung	Тур	Artikelnummer					
Zubehör Zangenstromwandler und Stromsensoren 1)							
Zangenstromwandler 1 200 A~, 1000:1, <u>4865</u> 400 Hz	WZ11A ^{D)}	Z208A					
Zangenstromwandler/-sensoren WZ12A . Frequenzbereich <u>4565</u> 500 Hz, Zan		bel max. 15 mm					
Zangenstromwandler 15 A 180 A, 1000:1	WZ12A	Z219A					
Zangenstromsensor 10 mA 100 A; 100 mV/A	WZ12B	Z219B					
Zangenstromsensor umschaltbar, 1 mA 15 A; 1 mV/mA und 1 A 150 A; 1 mV/A	WZ12C	Z219C					
Zangenstromwandler 30 mA 150 A, 1000:1	WZ12D	Z219D					

Erstellt in Deutschland • Änderungen vorbehalten • Eine PDF-Version finden Sie im Internet

GMC-I Messtechnik GmbH Südwestpark 15 90449 Nürnberg • Germany Telefon+49 911 8602-111 Telefax +49 911 8602-777 E-Mail info@gossenmetrawatt.com www.gossenmetrawatt.com

Ihr Ansprechpartner / Your Partner:

E-Mail: info@datatec.eu >>> www.datatec.eu

D) Datenblatt verfügbar
 Weitere Zangenstromwandler und Stromsensoren siehe Katalog Mess- und Prüftechnik